
Optimizing the Performance-Cost Tradeoff in
Cross-Edge Analytics

Lin Jia∗, Zhi Zhou† and Hai Jin∗
∗Service Computing Technology and System Lab, Cluster and Grid Computing Lab, Big Data Technology and System Lab

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
†School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China

Email: {ljia, hjin}@hust.edu.cn, zhouzhi9@mail.sysu.edu.cn

Abstract—As an emerging computing paradigm, edge comput-
ing has gathered much attention recently. With edge computing,
application datasets as examplified by performance logs and ac-
tivity records naturally span across multiple edge sites. Analyzing
such cross-edge datasets is however, by no means trivial, since
the status quo approach which aggregates the raw data to a
centralized cloud datacenter incurrs high performance and cost
overheads. To address this challenge, in this paper, we tackle
the problem of speeding up cross-edge analytics with low traffic
cost, through joint optimization of task and input data placement.
The resulted performance-cost tradeoff problem is difficult due
its non-convexity and the uncertainty of query characteristics.
To address these challenges, we combine convex relaxation with
a two-stage optimization. Specifically, a prediction of the query
characteristics is used to determine the data movement when the
data is generated, and then the actual value is used to decide
the task placement when the query arrives. Evaluations using
a production trace from a Facebook cluster highlight that, the
two-stage joint optimization approach can reduce the total cost
by up to 83% compared to the status quo approach.

I. INTRODUCTION

Edge computing (EC) [1], [2], with its promise to fulfill
the urgent need for richer applications and better experience
of resource-hungry mobile devices, is emerging as a new
computing paradigm and ascending to the spotlight. In edge
computing, cloud computing capabilities and service envi-
ronments are pushed from the internet core to the edge of
the cellular network. By running applications and processing
tasks in closer proximity to the end devices and users to
greatly reduce the end-to-end latency, edge computing is
boosting many emerging applications including video/audio
surveillance, remote e-health care, Internet of Vehicles (IoV),
augmented reality, etc [3], [4].

With multiple edge computing sites spanning across the
network edge, application data such as activity records of a
social networking services, and performance logs of a web
search engine — is naturally initiated at each geo-distributed
edge node [5]. How to analyze such geo-distributed datasets
is undergoing a revolution. Traditionally, the “centralized”
approach would aggregate the geo-distributed datasets to a
centralized, well-provisioned datacenter before analyzing them
locally. Given the unprecedented and continuous growth in
data volumes, this centralized aggregation would not only
incur significant amount of wide-area network (WAN) traffic,
but also increase waiting time for analytic jobs.

Data 1

Map 4

Reduce 1

Network

Core

Data 2

Map 2

Data 3

Map 3

Data 4

Map 4

Reduce 3Reduce 2

Edge Site 1 Edge Site 2

Edge Site 4Edge Site 3

Fig. 1. An example of cross-edge Map-Reduce query

In response to the above challenges, we propose cross-edge
analytics for edge computing in this paper. With cross-edge
analytics, the computation tasks of both input stage (e.g., map)
and output stage (e.g., reduce) are pushed to the edge sites
where data was born, rather than aggregating the raw data
to a centralized datacenter. Fig. 1 shows an example of cross-
edge Map-Reduce query. In this example, both map and reduce
tasks are moved to where the data is stored. As a result, both
query response time and WAN traffic can be significantly
reduced. However, the benefit of cross-edge analytics can
not be fully materialized if we leave the current analytics
frameworks such as Map-Reduce and Spark unmodified since
these frameworks are designed to operate in intra-cluster
environments, in which the bandwidths of different nodes
are relatively identical. While in cross-edge setting, the up-
and downlink bandwidths at each edge site are usually the
scarcest and most volatile resource, thus the duration of the
intermediate data transfer across the sites may exhibit great
variability. However, for frameworks such as Map-Reduce [6]
and Spark [7], only after all the up- and download transfers
for the intermediate stage are finished, the next stage can be
started. Therefore, it is critical to reduce the duration of the
slowest data transfer if we want to further reduce the response
time of the query, this in turn requires us to orchestrate the
intermediate data transfers across those edge sites, by taking
advantage of the latter’s bandwidth heterogeneity.

In this paper, we study how to speed up geo-distributed
analytics by making use of the bandwidth heterogeneity across

the edge sites. The duration of the intermediate stage which
dominates the job response time, is jointly determined by
the amount of input data and reduce task placed at each
edge site. Then an intuitive approach towards the above goal
is to optimize the task placement and input data placement
(via moving input data among edge sites) simultaneously. In
particular, by coordinating the input data placement and task
placement, we carefully adapt the amount of data transferred
at the source and destination of intermediate data flows,
respectively, to balance the duration of each transfer as much
as possible. As a result, the duration of the slowest transfer
and thus the intermediate stage can substantially reduced.
Unfortunately, the benefit of input data placement can not be
earned without pay, as the latter would lead to increased WAN
traffic cost. Consequently, when performing joint optimization
on input data and task placement, a fundamental problem is
to reduce the query response time at a low traffic cost.

To solve the above problem, in this paper we develop
a practical performance-cost trade-off model to study the
problem, and a two-stage algorithm is proposed to optimize
the performance-cost trade-off. Minimizing query response
is in conflict with minimizing traffic cost, since the former
requires more input data movement. Thus we need to strike
a balance between the performance in terms of response time
and the traffic cost. Towards this goal, we firstly construct a
unified cost objective to couple the two potentially conflicting
objectives, response time and traffic cost, in an economic way.
Consequently, the performance-cost trade-off problem can be
formulated as a cost minimization problem for joint input data
and task placement. However, solving the cost minimization
problem is rather challenging, due to: (1) the problem is
non-convex which rules out the direct application of existing
solvers for convex problems. (2) When making the decision
on data movement before the query arrives, we do not have
the exact value of the query selectivity (i.e., the ratio of the
amount of intermediate data produced to that of the input data),
even if predictions could be utilized, then the open question
is how to best minimize the effect of prediction error on the
cost objective?

To address the above challenges, we propose an efficient
solution by combining the advantages of convex relaxation and
a two-stage optimization. Specifically, we firstly convexify the
non-convex problem by omitting the constraint that the amount
of intermediate data transferred from one site to others should
be proportional to be fraction of reduce task placed at the latter.
Note that the resulted data movement would make the most
use of variability on bandwidth availability and traffic cost e.g.,
moving data out of the bottleneck sites with low bandwidth
and high cost. The data movement is still beneficial (though
may not be optimal) if we re-consider the aforementioned
proportionality constraint. We further handle the uncertainty
on query selectivity by employing a two-stage optimization
approach, at the first stage when input data is generated, we
determine the input data movement by solving the convex
relaxation problem with a predicted selectivity. Then at the
second stage when query arrives, we solve a separate linear

task placement problem to correct the query response time as
well as the task placement, based on the exact value of the
query selectivity.

II. RELATED WORK

Big-Data Analytics in Cloud Computing. As a result of
the unprecedented increase in data volume, the problem of
big-data analytics in cloud datacenters is not a new topic
and has been extensively studied. Most of existing works
focus on optimizing single objective on either query response
time or WAN bandwidth usage. For example, Pixida [8], a
system aims at minimizing the time of data movement with
the bandwidth-constrained links. JetStream [9] is proposed to
reduce the bandwidth requirement at bottleneck links, by pre-
processing the data locally before aggregating to a central
datacenter. Under the similar geo-distributed analytics context,
recent works [10] optimize the WAN traffic, while [11] reduces
average completion time of jobs by coordinating the task
execution at each datacenter.

Big-Data Analytics in Edge Computing. With the prolifer-
ation of edge computing, big-data analytics in edge computing
has begun to recieve great attention recently. To satisfy the
strict requirements of real-time and large-scale video analytics,
a hybrid and cost-efficient architecture based on both cloud
and edge is proposed [4]. To provide low-latency video ana-
lytics at places closer to the users, an edge computing-based
system is built to offload computation tasks between clients
and edge nodes and collaborate nearby edge nodes [12]. For
the long-studied problem of traffic estimation, a fine-grained
and edge-based traffic volume estimation scheme which uses
in-vehicle dashboard mounted cameras is proposed [13]. Our
work is different from and complementary to these works in at
least two important aspects: First, we do not assume the query
selectivity as a priori. Second, we formulate the underlying
problem to provide insight for both in-depth understanding
and efficient solution.

III. SYSTEM MODEL FOR CROSS-EDGE ANALYTICS

In this part, we present the architecture, system model and
optimization for cross-edge analytics. The notations used in
this section are summarized in Table I.

A. Overview of the Cross-Edge Infrastructure

We consider the cross-edge analytics framework running
on a set of S geographically dispersed edge sites, denoted as
S = {1, 2, · · · , S}. In line with the most recent systematic
work on big data analytics [14], we assume that these sites
are inter-connected by a wide-area network. Compared with
the network core which has abundant bandwidth, the available
bandwidths of the links between the network core and the
edge sites are usually limited and are more likely to be
the bottlenecks, as validated by recent measurements [15].
Moreover, the uplink and downlink bandwidths at those edge
sites cloud also exhibit significant heterogeneity. In this paper,
we use Ui and Di to denote the amount of available bandwidth
of the up- and downlink at edge site i ∈ S, respectively.

TABLE I
KEY NOTATIONS

Notation Definition

S Set of the edge sites, |S| = S

Ui Uplink bandwidth at edge site i
Di Downlink bandwidth at edge site i
ri Fraction of reduce task placed at edge site i
Mi Amount of input data originated at edge site i
cUi Duration of the upload transfer at edge site i
cDi Duration of the download transfer at edge site i
α Selectivity of the query
z Duration of the shuffle phase
dUi Duration of the input data upload at edge site i
dUi Duration of the input data download at edge site i
dUi Duration of the input data download at edge site i
PU
i Traffic price for data upload at edge site i

PD
i Traffic price for data download at edge site i

L
Lag between the generation of input data

and the arrival of its query

At each edge site, we also assume that the compute and stor-
age capacity are relatively abundant to process and store the
data. Note that this assumption is quite reasonable in practice,
as compared to the WAN bandwidth capacity whose growth
has been decelerating [10], compute and storage capacity can
be readily expanded at relatively lower cost.

B. Model of Corss-Edge Analytics

When services are hosted on top of geo-distributed com-
puting sites, large quantities of data such as user records
and system logs are continuously generated at each edge site.
For a distributed dataset (e.g., user activity records) spanning
multiple edge sites, we use Mi to denote the amount of data
partition originated at edge site i ∈ S . When a user query
arrives, a logically centralized global manager firstly converts
the user query into a DAG (directed acyclic graph) of stages,
each of which consists of many parallel computing tasks. In
this paper, we consider there are only two computing stages,
i.e., map and reduce [6]. Though simple, it preserves the fun-
damental communication pattern—shuffle—between the two
stages.

Input tasks of a query (i.e., map tasks in this work) can
execute locally on edge sites that contain their input data, and
their outputs, i.e., the intermediate data are then written to each
local edge site. For a specific query, the amount of intermediate
data at each edge site i ∈ S can be denoted as αMi, where
α is called the selectivity of the query and denotes the ratio
of the amount of intermediate data to that of input data. As a
result of in-memory caching of data and data locality, the input
stage can be finished extremely quick. Then, in the shuffle
phase, intermediate data at each edge site is disseminated to
the reduce tasks placed across multiple edge sites. Finally, the
reduce tasks are executed on the shuffled intermediate data to
produce the final outputs of the user query, and return them
to the global manager.

Note that the shuffle phase is data-intensive and the data
transfers from map tasks to reduce tasks may necessarily incur
all-to-all communication across the edge sites. Specifically,
given the placement profile of the reduce tasks, ri, i.e., the
fraction of reduce tasks placed at each site i ∈ S, which are
summed to be 1 (

∑
i∈S ri = 1), then the intermediate data

transferred out of edge site i ∈ S can be denoted as (1 −
ri)αMi. The intermediate data transferred into edge site i ∈
S can be denoted as riα(M −Mi), where M is a constant
and denotes the total amount of input data of the query, i.e.,
M =

∑
i∈SMi. We use cUi and cDi to denote the duration of

the upload and download of intermediate data at edge site i,
respectively. Then, for the uplink at each edge site i, we have:

Uic
U
i = (1− ri)αMi (1)

Similarly, for the downlink at each site i, we have:

Dic
D
i = riα(M −Mi) (2)

The duration of the intermediate communications, denoted
as z, depends on the duration of the slowest up- or download
transfer across the edge sites, i.e.,

z = max
i∈S

max{cUi , cDi } (3)

As discussed in Sec. III-A, the bandwidth Ui and Di

typically exhibit great heterogeneity across multiple edge sites,
as a result, the duration of those upload and download transfers
may also show great variability.

C. Optimizing Cross-Edge Analytics

For the cross-edge analytics framework, our goal is to
minimize both the query response time and the WAN traffic,
as the former is a key measure of service performance/quality,
while the latter is a fundamental implication of operational cost
($/bytes).

Given the assumption of abundant CPU and IO resources,
WAN is the only bottleneck and the response time of a query is
dominated by the duration of the data-intensive shuffle phase.
Thus, we focus on minimizing the duration of data-intensive
shuffle phase, i.e., z defined in Sec. III-B to reduce the query
response time. Unfortunately, minimizing the duration of the
shuffle phase is non-trivial, as it is bounded by the slowest
up- or download transfer across the edge sites, which means
that reduce the duration of some transfers may not necessarily
reduce the duration of the shuffle phase.

An intuitive yet promising approach to minimizing the
duration of the shuffle phase, is to balance the duration of those
upload and download transfers via careful task placement (i.e.,
ri defined in Sec. III-B). We illustrate this intuition with a 2-
edge example, the setup is shown in Table II. In the example,
as r1 changes, the duration of the transfer on each link is
plotted in Fig. 2. We can see that, by tuning r1 (and thus r2),
we can change the duration of each transfer, specifically, when
r1 = 0.57, the duration of the slowest transfer is minimized,
with the value of 8.57s. While when r1 deviates from the
optima, the durations of the transfers become more unbalanced
and lead to a larger duration of shuffle phase.

TABLE II
SETUP OF THE 2-EDGE EXAMPLE WITH SELECTIVITY α = 1

Input Data (MB) Uplink (MB/s) Downlink (MB/s)
Edge 1 200 10 25

Edge 2 300 20 20

Optimal task placement with r1=0.57

Fastest transfer

0 10.57

 D
u

ra
ti
o
n

 o
f
tr

a
n
s
fe

r
(s

)

20

10

15

12

Task placement at site 1 (r1)

Fig. 2. Without input data movement, the duration of each transfer under
various r1. Here U1 denotes the upload transfer at edge site 1, similarly for
U2, D1, and D2.

Though careful task placement can reduce query response
time via balancing the duration of each transfer at different
WAN links, the optimal task placement is still constrained by
the distribution of the intermediate data. This can be seen from
the Eq. (1) and (2), where the amount of data transferred at
each WAN link jointly depends on the task placement ri and
the distribution of the input data Mi. Thus, data placement
(i.e., changing the distribution of input data at each edge site)
is complementary to task placement towards reducing query
response time. Again, in Fig. 2, we can see that at the optima
r1 = 0.57, the download transfer at site 2 has the smallest
duration while the download transfer at edge site 1 has the
largest duration, then a natural question is, can we move some
input data from edge site 2 to edge site 1 to accelerate the
shuffle phase? To answer this question, we try different amount
of input data to be moved from edge site 2 to edge site 1, and
examine the corresponding duration of the shuffle phase, Fig.
3 illustrates the trade-off between the duration of the shuffle
phase and the amount of input data movement from edge site 2
to site 1. Interestingly, we can see that, the duration of shuffle
phase diminishes as the amount of input data moved, and it
reduces to 0 if all the input data at edge site 2 is moved to edge
site 1. Furthermore, the figure also shows that the duration of
shuffle phase decreases faster as the amount of data moved
increases, demonstrating the increasing marginal benefit (the
reduction of the duration brought by each additional unit of
data moved) of input data movement.

Unfortunately, even with the benefits of reducing the query
response time, data movement however increases the amount
of WAN traffic used for data transfer. As a result, a funda-
mental challenge in performing joint data and task placement,
is how to optimize the trade-off between the above the two
potentially conflicting objectives in a cost-effective manner. To
this end, we firstly construct a unified cost objective to couple
these conflicting sides in an economic way.

0 50 100 150 200 250 300
0

2

4

6

8

10

Amount of Data Moved (MB)

D
u
ra

ti
o
n
 o

f
S

h
u
ff
le

 P
h
a
s
e
 (

s
)

Fig. 3. The duration of the shuffle phase diminishes as the amount of input
moved from edge site 2 to edge site 1 increases

D. Arbitrating the Cost-Performance Tradeoff

We optimize the cost-performance trade-off by coupling the
response time and traffic usage into a unified cost objective.
Specifically, for interactive web-applications such as web
search and social networking, even a small increase in latency
can significantly impact the revenue of service providers,
as demonstrated by the measurements conducted by internet
giants [16], [17]. For Google, an additional 400 ms latency
in search responses reduces search volume by 0.74%. For
Amazon, a 100 ms latency increase implies a 1% sales loss.
For Microsoft Bing, a 500 ms latency increase would lead
to 1.2% revenue loss. Here we use delay cost to refer to
the economic loss due to the increased response time [18],
and adopt a linear loss function θz to capture this delay cost,
the parameter θ is the price that converts response time to a
monetary term.

On the other hand, when moving input data and transferring
intermediate data across the edge sites, network traffic cost is
involved. In reality, there are two major kinds of charging
scheme for network traffic. In the first scheme, the traffic cost
is linear with the traffic volume. While the second is the 95-
percentile charging scheme which is mainly adopted in ISP
network. In this paper, we consider the former, i.e., the linear
charging scheme, since optimizing the linear cost can also
efficiently reduce the 95-percentile cost [19]. Given the amount
of input data Uid

U
i (Did

D
i) moved out of (into, Resp.) edge

site i, where dUi (dDi) is the duration of input data upload
(download, Resp.), and the price PU

i (PD
i) for uploading

(downloading, Resp.) one unit of data at edge site i. The traffic
cost for moving input data and transferring intermediate data
can be denoted as:

∑
i∈S{PU

i Ui(c
U
i +d

U
i)+P

D
i Di(c

D
i +dDi)}.

Given the revenue loss brought by increased response time
and the cost incurred by WAN traffic, the following total cost

θz +
∑
i∈S
{PU

i Ui(c
U
i + dUi) + PD

i Di(c
D
i + dDi)} (4)

arbitrates the aforementioned performance-cost trade-off is
expected to be minimized, via joint data and task placement.

Specifically, after the data movement, the amount of input at
each edge site i is Mi+Did

D
i −Uid

U
i , thus the amount of data

to upload from site i is (1−ri)α(Mi+Did
D
i −Uid

U
i), and the

amount of data download to edge site i is riα{
∑

i′∈S(Mi′ +
Di′d

D
i′ − Ui′d

U
i′) − (Mi + Did

D
i − Uid

U
i)}. Since the total

amount of data upload should be equal to that of data
download across multiple edge sites, we have

∑
i′∈S Ui′d

U
i′ =∑

i∈S Di′d
D
i′ , together with the equation

∑
i′∈SMi′ = M

presented in Sec. III-B, the amount of data download at edge
site i can be rewritten as riα(M − (Mi + Did

D
i − Uid

U
i)).

In addition, the data movement should be finished within the
query lag L, i.e., the time interval between the data generation
and query arrival.

We are now in a position to formulate the performance-cost
trade-off for cross-edge analytics as an optimization problem
that minimizes the total cost consisting of revenue loss due
to increased response time, and operational cost incurred by
WAN traffic.

min z +
∑
i∈S
{PU

i Ui(c
U
i + dUi) + PD

i Di(c
D
i + dDi)}

s.t.
∑
i∈S

ri = 1 (5a)

Uic
U
i = (1− ri)α(Mi +Did

D
i − Uid

U
i) (5b)

Dic
D
i = riα(M − (Mi +Did

D
i − Uid

U
i)) (5c)∑

i∈S
Uid

U
i =

∑
i∈S

Did
D
i (5d)

0 ≤ dUi ≤Mi/Ui (5e)
0 ≤ dUi ≤ L (5f)
0 ≤ dDi ≤ L (5g)
0 ≤ cUi ≤ z (5h)
0 ≤ cDi ≤ z (5i)
0 ≤ ri (5j)

For ease of presentation, we assume that one unit of
increased response time leads to one unit of revenue loss, then
the price θ is omitted in the objective. (5a) is the constraint
that task placement ri is summed to be 1 across the sites. (5b)
and (5g) compute the amount of intermediate data uploaded
and downloaded at each edge site i after the data movement,
respectively. (5d) implies that the total amount of data upload
should be equal to that of data download across those edge
sites. (5e) implies that the amount of input data moved out
of each edge site can not exceed the original amount Mi.
(5f) and (5g) enforce that the input data movement should be
finished within the query lag time. (5h) and (5i) implies that
the duration of shuffle phase is bounded by the slowest up- or
download transfer across the sites, which is equivalent to but
of easier presentation than Eq. (3) in Sec. III-B.

Unfortunately, solving the above problem (5) for even single
query is highly challenging, due to: (1) the above problem
is non-convex, as the multiplying of decision variables (e.g.,
rid

D
i) makes the constraints (5b) and (5g) non-convex. (2) The

above problem involves uncertainly and should be solved as
soon as the dataset has been generated, however, the selectivity
of the query, α remains unknown until the query arrives. This
means that, when solving the above problem, we do not have
the exact value of α.

IV. ALGORITHM FOR UNCERTAIN QUERY

In response to the challenges of the performance-cost trade-
off problem, we firstly carefully relax the non-convex problem
(5) to make it convex and thus tractable. Then, to address
the uncertainty of the query selectivity, we take a two-stage
optimization approach to decouple data placement from task
placement. Specifically, at the first stage (i.e., when data is
generated), we solve the convex relaxation problem to obtain a
sub-optimal solution for data movement, based on a predicted
query selectivity. Then at the second stage when query arrives,
we solve the task placement problem with the exact selectivity
which is then available.

A. Convex Relaxation for the Performance-Cost Trade-off
Problem

Recall that the performance-cost trade-off problem is non-
convex since the common term riα(Mi + Did

D
i − Uid

U
i)

in constraints (5b) and (5c) contains products of decision
variables. Interestingly, we can see that this term represents
the amount of intermediate data reserved locally at site i. To
eliminate the decision variable ri and thus the products of
decision variables, we introduce the new notation tij to denote
the amount of intermediate data transferred from site i to site
j, then there is a direct connection between tij and the original
variables dUi , d

D
i , and rj :

tij = α(Mi +Did
D
i − Uid

U
i)rj (6)

Putting it together with the constraint (5a), we obtain:∑
j∈S

tij = α(Mi +Did
D
i − Uid

U
i) (7)

Eq. (7) is intuitive, as it represents that the intermediate
data generated at each site is distributed among all the sites.
Furthermore, the constraints (5b) and (5c) can now be re-
written as:

Uic
U
i =

∑
j∈S

tij − tii (8)

Dic
D
i =

∑
j∈S

tji − tii (9)

While it is critical to note that the transformation (7)-(9) is
not equivalent to the original constraints (5a)-(5c), since the
proportionality between the amount of intermediate distributed
to each site and the fraction of task placed at each site is
not enforced. Unfortunately, maintaining this proportionality
constraint, i.e.,

t1i∑
j∈S t1j

=
t2i∑

j∈S t2j
= · · · = tMi∑

j∈S tMj
(= ri) (10)

is challenging, since this proportionality constraint is non-
convex (due to the products of tij’s).

For tractability, we ignore this constraint (10). Naively
removing this constraint will result in an extreme case where
intermediate data produced at each site is entirely reserved
locally, as this leads to zero traffic cost and zero response time.
To exclude this extreme case and to fully realize the benefit of

input data movement, we enforce that tii = 0,∀i ∈ S, meaning
that the intermediate data produced at each site is completely
moved out to other sites. We now use the transformation (7)-
(9) to replace the original constraints (5a)-(5c), yielding the
following convex relaxation problem:

min z +
∑
i∈S
{PU

i Ui(c
U
i + dUi) + PD

i Di(c
D
i + dDi)}(11)

s.t.
∑
j∈S

tij = α(Mi +Did
D
i − Uid

U
i)

Uic
U
i =

∑
j∈S

tij − tii

Dic
D
i =

∑
j∈S

tji − tii∑
i∈S

Uid
U
i =

∑
i∈S

Did
D
i

0 ≤ dUi ≤Mi/Ui

0 ≤ dUi ≤ L
0 ≤ dDi ≤ L
0 ≤ cUi ≤ z
0 ≤ cDi ≤ z
0 ≤ tij(j 6= i), tii = 0

Note that the above convex problem (11) still embodies
meaningful interpretation. Specifically, it assesses the benefit
of an “ideal” condition under which each site distributes its
entire intermediate data arbitrarily across the other sites, but
rather than being constrained by the global task placement
scheme. Intuitively, under this scenario, the data movement
would make the most use of the bandwidth and price hetero-
geneities to aggressively reduce the total cost, by moving data
out of the bottleneck sites with low bandwidth and high cost.

B. Two-stage Optimization to Handle the Uncertainty

Though the convex relaxation problem (11) can be readily
solved using standard linear programming techniques, at the
time when data movement begins, the query selectivity is
unknown. On the other hand, solving the convex relaxation
problem (11) only yields a feasible solution for input data
movement, while we still need a solution for task place-
ment. In response, following the philosophy of prediction-
and-correction, we take a two-stage optimization approach to
decouple task placement from the data movement.

Specifically, at the first stage when data is generated, we
solve the convex relaxation problem with a predicted query
selectivity to yield a valid solution for data placement. Then,
at the second stage when the query arrives and the exact query
selectivity is available, we correct the query response time
and obtain the task placement solution by solving a separate
optimization. The detailed algorithm is shown as follows:

Stage 1: when data is generated, we solve the convex
relaxation problem (11) with the predicted selectivity α̂, and
using the calculated dUi , d

D
i to do the input data movement.

Albeit the duration of the shuffle phase (z) and the duration of

intermediate data transfers (cUi and cDi) can be also obtained,
they are invalid since the shuffle phase does not really happen.
We let Ti = Did

D
i − Uid

U
i , which will be used as the input

of the second stage.
Stage 2: when query arrives, with the exact selectivity α

and the input data movement finished in Stage 1, we solve the
following linear problem to obtain the corresponding optimal
task placement, and correct the duration of the shuffle phase,
as well as the duration of the intermediate data transfers.

min z +
∑
i∈S
{PU

i Uic
U
i + PD

i Dic
D
i }, (12)

s.t.
∑
i∈S

ri = 1,

Uic
U
i = (1− ri)α(Mi + Ti),

Dic
D
i = riα(M − (Mi + Ti)),

0 ≤ cUi ≤ z,
0 ≤ cDi ≤ z,
0 ≤ ri.

V. PERFORMANCE EVALUATION

In this section, we conduct trace-driven simulations to
realisticly evaluate the proposed solution.

A. Experimental Setup

Trace: The trace we use for the simulations is a Hadoop
cluster workload trace from Facebook [20]. The trace rep-
resents 24 hours in one day of 2009 on a cluster with 600
machines. The trace recorded the detailed information about
the submission time, waiting time (the time interval from job
submission to the beginning of map execution), map size,
shuffle size, and reduce size of each job. By filtering out the
jobs with zero map size or zero shuffle size, we get about
1446 jobs in 24 hours, i.e., about 60 jobs are submitted to the
cluster per hour in average.

Setup of the distributed edge sites: We mimic a distributed
edge infrastructure with S = 20 sites. The up- and downlink
bandwidths of each site are set to be random values between
50MB/s and 1GB/s. To mimic the cross-edge datasets, we
split the total amount of input data of each job in the trace
among the simulated 20 edge sites, by following a normal
distribution as in [21]. Finally, we set the upload and download
traffic prices (i.e., PU

i and PD
i , respectively) at each link to

be random values between 4×10−6$/MB and 7×10−6$/MB.
Recall that in Sec. III-D, we have normalized the price of
response time, θ to be 1.

B. Evaluation Results

To evaluate the performance of the two-stage joint optimiza-
tion on data and task placement, proposed for single query in
Sec. IV, we choose three benchmarks to compare with. The
first benchmark is the aforementioned centralized approach
that aggregates the data originated at different edge sites to a
central datacenter, here we choose the site with the largest
downlink bandwidth as the central datacenter. The second

0 0.01 0.02 0.03 0.04
0

1

2

3

4

5
x 10

−3

Predicted Selectivity

C
o
s
t
($

)

Total Cost
Traff. Cost of Data Mov.
Traff. Cost of Shuffle
Delay Cost

(a) Actual selectivity α = 0.002

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6
x 10

−3

Predicted Selectivity

C
o
s
t
($

)

Total Cost
Traff. Cost of Data Mov.
Traff. Cost of Shuffle
Delay Cost

(b) Actual selectivity α = 0.005

0 0.04 0.08 0.12 0.16 0.2
0

0.02

0.04

0.06

0.08

Predicted Selectivity

C
o
s
t
($

)

Total Cost
Traff. Cost of Data Mov.
Traff. Cost of Shuffle
Delay Cost

(c) Actual selectivity α = 0.1

Fig. 4. The total cost, as well as the three components: delay cost, traffic cost of data shuffle, and traffic cost of data movement verses the predicted selectivity,
under different values of actual selectivity

benchmark is the “in place” approach that leaves the input data
unmoved at split the reduce task proportional to the amount
of input data originated at each site. The third benchmark is
the approach that only optimize the task placement by solving
the task placement problem (12) in Sec. IV-B.

To show how the algorithm works, we first pick one job
from the trace to examine, the job is map-heavy, with a
selectivity of α = 0.1 and a map size of 3.02GB.

1) How does Prediction Error Affect: Recall that in the
first stage when data is generated, the proposed algorithm
moves the dataset based on a predicted selectivity. In order
to show the effect of prediction error on the cost of jobs with
different actual selectivity, we vary the actual selectivity in
a relatively large range. Figure 4 depicts the effect of the
predicted selectivity under various actual selectivity.

Specifically, Fig. 4(a) shows that when the actual selectivity
α = 0.002, the total cost firstly increases and then becomes
stabilized as the predicted selectivity α̂ grows. However, Fig.
4(b) shows that when the actual selectivity α = 0.005, the total
cost firstly decreases and then increases and finally becomes
stabilized as the predicted selectivity α̂ grows. Interestingly,
we also find that when the predicted selectivity equals to the
exact selectivity, then the total cost is larger than that with a
under-predicted selectivity. The observation from Fig. 4(c) is
also different from that of Fig. 4(a) and Fig. 4(b): the total cost
decreases as the predicted selectivity α̂ grows, yet when the
predicted selectivity equals to the exact selectivity, the total
cost has became stabilized and also been minimized. Putting
these three sub-figures together, we can conclude that, the
prediction error does not show any common feature on the
total cost of jobs with different actual selectivity, yet exact
prediction of the selectivity may not necessarily minimize the
total cost.

2) How does Query Lag Affect: Comparing with the third
benchmark that solely optimizes the task placement, the joint
optimization approach further optimizes input data distribution
by moving input data within the lag between data generation
and query arrival. Thus, it is intuitively that the improvement
of the joint optimization approach (compared to the task
optimization approach) largely depends on the length of the
query lag. To validate this intuition, we vary the query lag and
plot the total cost obtained by the joint optimization as well as

0 0.5 1 1.5 2
0.02

0.04

0.06

0.08

0.1

0.12

Query Lag (s)

C
o
s
t
($

)

Joint Optimization
Estimation of Stage 1
Only Task Placement

Fig. 5. The total cost brought by the joint optimization approach, task place-
ment optimization approach, and predicted by the first-stage optimization,
under varying lag

0 2 4 6 8

x 10
−3

0

0.02

0.04

0.06

0.08

Traffic Cost

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

α=0.01

α=0.05

α=0.1

Fig. 6. Under various values of the actual selectivity, the response time
diminishes and the traffic cost increases as the query lag increase. Circles, x-
marks, and diamonds correspond to lag L = 0.2, 0.4, and 0.6, respectively.

the total cost predicted by the first-stage optimization, under
perfect prediction at the first stage. From Fig. 5, we observe
that both the total cost obtained by the joint optimization
and predicted by the first-stage optimization firstly diminishes
and then becomes stabilized. The rationale is that, when the
query lag keeps relatively small, as the query lag increases,
more input data movement can be performed, thus the total
cost decreases as the lag expands. However, after the optimal
amount of input data movement has been finished, no more
input data would be moved as the lag increase, thus the cost
becomes stabilized. Moreover, Fig. 5 also demonstrates that
first-stage would over-estimate the total cost. This is in line
with the enforcements that, in the first-stage optimization, each
site uploads all the intermediate data to other sites.

When performing the joint optimization for different values
of query lag, we record the response time and the total
traffic cost (for both shuffle and input data movement) under

different lags and illustrate the former in Fig. 6. Clearly,
as expected, with the increase of the query lag (meaning
that the amount of input data been moved increases), the
response time diminishes and the traffic cost rises. Further
more, when comparing the curves of different selectivity, we
can see that under the same lag, a larger selectivity would
incur both increased response time and traffic cost. This is
because that a larger selectivity means more intermediate data
to be transferred, thus leads prolonged response time and rising
traffic cost.

3) How Much Benefit of Joint Optimization: To assess the
benefit of joint optimization on data and task placement, we
repeat our algorithm as well as the three benchmarks for the
1446 jobs in the trace, here we assume that the first stage has
perfect prediction of the query selectivity.

Total Cost Resp. Time Traffic Cost
−150%

100%

−50%

0

50%

100%

P
e
rc

e
n
ta

g
e
 o

f
R

e
d
u
c
ti
o
n

Joint Opt. vs Task Placement

Joint Opt. vs In Place

Joint Opt. vs Centralized

Fig. 7. Distribution of query response time under various scheduling policies

Fig. 7 depicts the reduction of the total cost, response time,
and traffic cost brought by the joint optimization approaches
versus the three benchmarks, under various prediction errors.
Excitingly, we can see that the joint optimization on data
and task placement can substantially reduce the total cost
and response time when compared to the three benchmarks.
Specifically, it can reduce the total cost by 83%, 72%, and
44%, and reduce the response time by 85%, 74%, and 46%
when compared to the task placement optimization, in place
approach, and centralized aggregation, respectively. However,
we can also see that the joint optimization approach incurs
150% centralized approach, meaning that cross-edge analytics
may not necessarily reduce the WAN traffic cost. Note that this
is mainly due to the fact that the most of the jobs in the trace
are shuffle-heavy, and the selectivity of these jobs can be as
higher as 82.1, for these jobs, the traffic cost of intermediate
data transfer can largely outperform the traffic cost of input
data movement, thus aggregating the input data of these jobs
can substantially reduce the traffic cost.

VI. CONCLUSION

In this paper, we study how to speed up cross-edge analytics
at low traffic cost, via joint optimization on input data and task
placement. To navigate the tradeoff between response time and
traffic cost, we construct a unified cost objective to couple the
above two conflicting sides. However, the resulted total cost
minimization problem is rather challenging, due to its non-
convexity and the uncertainty on the query selectivity. We
show how these challenges can be addressed by a careful

combination of convex relaxation and two-stage optimiza-
tion. Extensive evaluations using a production trace from a
Facebook cluster show that the two-stage joint optimization
approach can reduce the total cost by up to 83% compared to
the centralized aggregation approach.

ACKNOWLEDGEMENTS

This research was supported by National Key Research
and Development Program under grant 2016YFB1000501. The
corresponding author is Z. Zhou.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, 2017.

[2] X. Chen, W. Li, S. Lu, Z. Zhou, and X. Fu, “Efficient resource allocation
for on-demand mobile-edge cloud computing,” IEEE Transactions on
Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2018.

[3] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, “Socially-motivated
cooperative mobile edge computing,” IEEE Network, vol. PP, no. 99,
pp. 12–18, 2018.

[4] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58–67,
2017.

[5] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” in Proc.
of the IEEE/ACM IWQoS, 2018.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in Proc. of USENIX OSDI, 2004.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
of USENIX NSDI, 2012.

[8] K. Kloudas, M. Mamede, N. Preguica, and R. Rodrigues, “Pixida:
Optimizing data parallel jobs in wide-area data analytics,” in Proc. of
VLDB, 2015.

[9] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,” in
Proc. of USENIX NSDI, 2014.

[10] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and G. Varghese, “Global
analytics in the face of bandwidth and regulatory constraints,” in Proc.
of USENIX NSDI, 2015.

[11] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in Proc. ACM SoCC, 2015.

[12] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA: latency-
aware video analytics on edge computing platform,” in Proceedings of
the ACM/IEEE SEC, 2017, pp. 15:1–15:13.

[13] G. Kar, S. Jain, M. Gruteser, F. Bai, and R. Govindan, “Real-time traffic
estimation at vehicular edge nodes,” in Proceedings of the ACM/IEEE
SEC, 2017, pp. 3:1–3:13.

[14] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proc. of
ACM SIGCOMM, 2015.

[15] Measuring Internet Congestion: A Preliminary Report.
https://ipp.mit.edu/sites/default/files/documents/Congestion-handout-
final.pdf.

[16] Y. Chen, R. Mahajan, B. Sridharan, and Z. Zhang, “A Provider-side
View of Web Search Response Time,” in Proc. of ACM SIGCOMM,
2013.

[17] A. Singla, B. Chandrasekaran, P. Godfrey, and B. Maggs, “The Internet
at the Speed of Light,” in Proc. of ACM Hotnets, 2014.

[18] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. H. Andrew, “Geograph-
ical Load Balancing with Renewables,” in Proc. of ACM GreenMetrics,
2011.

[19] S. Narayana, J. W. Jiang, J. Rexford, and M. Chiang, “To coordinate
or not to coordinate? wide-area traffic management for data centers,” in
Proc. ACM CoNEXT, 2012.

[20] Facebook Cluster Trace. https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-
repository.

[21] H. Xu and B. Li, “Joint Request Mapping and Response Routing for
Geo-distributed Cloud Services,” in Proc. of IEEE INFOCOM, 2013.

